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1 Introduction

Classical string solutions in AdS5 × S5 have played an important role in the study of the

duality to N = 4 SYM [1–3]. It seems that this pattern is being repeated in the new N = 6

duality [4], in which planar superconformal Chern-Simons theory is dual to string theory

on AdS4 × CP 3. Some of the most interesting recent papers study strings moving in an

AdS2 ×S1 subspace, where although the classical solutions are identical to those long used
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in the N = 4 case, the quantum properties are different. The results from semiclassical

quantisation [5–8] can be compared to those from the asymptotic Bethe ansatz, and at

present there appear to be some difficulties [9].

This paper is instead about string solutions exploring primarily the CP 3 factor. One

would expect to find analogues of the giant magnons [3] here, which in the N = 4 case

live in an S2 ⊂ S5. And indeed, it turns out that the same solutions exist in CP 3 [10, 11].

There are two inequivalent ways to embed the basic S2 magnon, into either CP 1 = S2 or

RP 2 = S2/Z2, [10] both two-dimensional subspaces of CP 3.

In either theory, the anomalous dimension can be calculated as the Hamiltonian of

some spin chain [10, 12–14]. The giant magnons are dual to the elementary excitations of

this spin chain, and have a periodic dispersion relation ∆−J =
√

1 + f2(λ) sin2(p/2) which

on the gauge side is an symptom of the discrete spatial dimension of the spin chain, and

on the string side arises from p being an angle along an equator. The conformal dimension

∆ and the R-charge J are mapped by AdS/CFT to energy and angular momentum of the

string state. For the state dual to the (ferromagnetic) vacuum of the spin chain, which is

a point particle, ∆ − J becomes the Hamiltonian for small fluctuations. We confirm that

in the N = 6 case, the difference ∆ − (J1 − J4)/2 has the same property.

An important difference between the old N = 4 case and the new N = 6 case is

the behaviour of the function f(λ), the only part of the dispersion relation not fixed by

supersymmetry [3, 15]. In the old case, calculations of f(λ) at both large and small λ give

f(λ) =
√
λ/π, and this is conjectured to be true for all λ. In the new case, however, the

function (often called h instead) is h(λ) = λ at small λ but h(λ) ∼ λ1/2 at large λ. Our

knowledge of this function at large λ comes (in both cases) from studying classical string

theory, and so depends on the correct identification of the relevant string solutions.

Dyonic giant magnons are those with more than one large angular momentum, dual

to a large condensate of impurities on the spin chain. These are string solutions in S3, and

they can at least sometimes be embedded into CP 3 in much the same way as the basic

magnon, generalising the RP 2 magnons and living in an RP 3 subspace [16, 17]. There

is room for dyonic solutions with other angular momenta, truly exploring CP 3, including

those generalising the CP 1 magnon. While we have not been able to find such solutions, we

discuss where they might live. The subspace frequently called S2×S2 in the literature is in

fact just RP 2, and while there is a genuine S2×S2 subspace, one cannot place arbitrary S2

string solutions into each factor, because the equations of motion couple the two factors.

Likewise the S2×S1 subspace studied by [17] has extra constraints limiting what solutions

can exist there.

Outline. In section 2 we write down a few relevant facts about ABJM theory and its

spin-chain description, and in section 3 we look at its string dual in AdS4 × CP 3. In

section 4 we calculate fluctuations about the point particle solution corresponding to the

spin chain vacuum, showing that ∆ − (J1 − J4)/2 is a Hamiltonian for these.

Section 5 is a catalogue of existing giant magnon solutions in various subspaces of

CP 3: single-spin magnons in CP 1 and RP 2, and dyonic magnons in RP 3. Section 6 looks

at other subspaces of potential interest, including the four-dimensional spaces S2 ×S2 and
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CP 2, and also S2 × S1. Section 7 is a brief discussion of finite-J solutions, which can be

embedded in the same way, and their dispersion relations.

We discuss and conclude in section 8. Extra details of the geometry, and how to analyse

strings in it using Lagrange multipliers, are discussed in two appendices.

Note added in proof. After this paper’s appearance on the archive, but before its

appearance in the journal, two new string solutions not known in S5 have appeared, thus

the first sentence of this paper’s abstract is no longer true. One was found by [18–20], and

another by [21].

2 Groups in ABJM theory

The N = 6 superconformal Chern-Simons-matter theory1of ABJM [4] of interest here

has gauge symmetry U(N) × U(N). We will only study its scalars Ai, Bi. The fields

A1, A2 are matrices in the (N, N̄) representation of this (one fundamental index, one anti-

fundamental), and the fields B1, B2 in the (N̄ ,N). There is a manifest SU(2)A R-symmetry

in which the As form a doublet, and SU(2)B acting on the Bs. There is also the conformal

group SO(2, 3), since we are in 2+1 dimensions. Taking spacetime to be R × S2, we

restrict attention to fields in the lowest Kaluza-Klein mode on this S2, i.e. in the singlet

representation of SO(3)r, which is the spatial part of the conformal group.

In [24] it was proven that the full R-symmetry is in fact SU(4), with the following

vector in the fundamental representation:

Y A = (A1, A2, B
†
1, B

†
2) (2.1)

and Y †
A in the anti-fundamental. If we keep only (Y 1, Y 4) = (A1, B

†
2) then we have a sub-

group called SU(2)G′ , and if we keep only (Y 2, Y 3) = (A2, B
†
1) then we have the subgroup

SU(2)G.2

This theory is dual to membranes on AdS4×S7/Zk, where (k,−k) are the level numbers

of the two Chern-Simons terms. The ’t Hooft limit N → ∞ with λ = N/k fixed sends

k → ∞, and reduces the dual theory to type IIA strings on AdS4 × CP 3.

To find a spin-chain description, [10, 13, 14] study gauge invariant operators of length

2L of the form

O = χB1B2···BL
A1A2···AL

tr Y A1Y †
B1
Y A2Y †

B2
. . . Y ALY †

BL
.

When χ is fully symmetric (in the As, and in the Bs) and traceless, O is a chiral primary,

thus protected, and has scaling dimension ∆ = L. In this case the anomalous dimension,

defined D = ∆ − L, will be zero.

The SU(2) × SU(2) sector refers to operators O in which only Y 1, Y 2 and Y †
3 , Y †

4

appear. (That is, only fields A1, A2, B1 and B2. The two factors in the name are SU(2)A

1These of theories were discovered after the explorations of 3-dimensional superconformal theories with

non-Lie-algebra guage symmetry by BLG, [22] and build on earlier work on Chern-Simons-matter theories

by [23].
2These subscripts are the notation of [10], except that they have B1 and B2 the other way around: their

spin chain vacuum is tr(A1B
†
1)

L rather than the tr(Y 1Y †
4 )L of [13] which we use, (2.2).
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and SU(2)B). The SU(3) sector allows operators with Y 1, Y 2, Y 3 and Y †
4 . For both of

these, the vacuum is taken to be

Ovac = tr
(

Y 1Y †
4

)L
. (2.2)

This has ∆ = L, and J = L, where J is the Cartan generator in SU(2)G′ : J(Y 1) = 1
2 and

J(Y 4) = −1
2 , thus J(Y †

4 ) = +1
2 .

In the SU(2) × SU(2) sector, the two-loop anomalous scaling dimension is computed

by the sum of the Hamiltonians of two independent Heisenberg XXX spin chains, for the

even and odd sites. The momentum constraint (from the U(N) trace tr) is that the sum

of their momenta be zero. (This is slightly weaker than the N = 4 case, [12] where there

is one total momentum which must be zero).

3 The geometry of CP
3

The string dual of ABJM theory (in the ’t Hooft limit) lives in the 10-dimensional space

AdS4 × CP 3, with sizes specified by the metric

ds2 =
R2

4
ds2AdS4

+R2ds2CP 3 (3.1)

where R2 = 25/2π
√
λ. The large-λ limit gives strongly coupled gauge theory, dual to

classical strings. In addition to this (string-frame) metric, there is a dilaton and RR forms,

given by [4], which do not influence the motion of classical strings.

The metric for CP 3 is given in [4] as

ds2CP 3 =
dzidz̄i
ρ2

− |zidz̄i|2
ρ4

, where ρ2 = ziz̄i (3.2)

in terms of the homogeneous co-ordinates z ∈ C
4, where z ∼ λz for any complex λ.

The SU(4) isometry symmetry is manifest here, with z in the fundamental representation.

AdS/CFT identifies this isometry group with the SU(4) R-symmetry group, so it is natural

to take z to be in the same basis as the fields Y A in (2.1) above.

There are two angular parameterisations commonly used. One set of angles was given

by [25]:

ds2CP 3 = dµ2 +
1

4
sin2 µ cos2 µ

[

dχ+ sin2 α (dψ + cos θ dφ)
]2

+ sin2 µ

[

dα2 +
1

4
sin2 α

(

dθ2 + sin2 θ dφ2 + cos2 α (dψ + cos θ dφ)2
)

]

(3.3)

with ranges α, µ ∈ [0, π2 ], θ ∈ [0, π], φ ∈ [0, 2π] and ψ,χ ∈ [0, 4π]. Another was given by [26]:

ds2CP 3 = dξ2 +
1

4
sin2 2ξ

(

dη +
1

2
cos ϑ1 dϕ1 −

1

2
cos ϑ2 dϕ2

)2

+
1

4
cos2 ξ

(

dϑ2
1 + sin2 ϑ1 dϕ

2
1

)

+
1

4
sin2 ξ

(

dϑ2
2 + sin2 ϑ2 dϕ

2
2

)

(3.4)
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where ξ ∈ [0, π2 ], ϑ1, ϑ2 ∈ [0, π], ϕ1, ϕ2 ∈ [0, 2π] and η ∈ [0, 4π]. (This can be obtained by

building S7 from S3 × S3 with the seventh co-ordiante ξ controlling their relative sizes).

In appendix A we give the maps between these angles and the homogeneous co-ordinates.

The Penrose limit describes the geometry very near to a null geodesic [27] and has

been very important in AdS/CFT [28]. This has been studied in AdS4 × CP 3 by [10],

where the particle travels along χ = 4t with α = 0, µ = π/4 in terms of the angles in (3.3),

and by [11, 29], who use co-ordinates (3.4), expanding near ϑ1 = ϑ2 = 0, ξ = π/4 with

distance along the line ψ̃ = η + (ϕ1 − ϕ2)/2 = −2t. In all cases, the test particle moves

along the path3

z =
1√
2

(

eit, 0, 0, e−it
)

. (3.5)

This has large angular momentum in opposite directions on the z1 and z4 planes, as one

would expect for the state dual to the operator (2.2). This led [13] to write this state down

as the string state dual to the vacuum Ovac.

4 Fluctuation Hamiltonian for the point particle

In the AdS5 × S5 case, the string state dual to the spin chain vacuum tr(Φ1 + iΦ2)
L is

a point particle with X = (cos t, sin t, 0, 0, 0, 0). This state has large angular momentum

in the 1-2 plane, J = ∆. By studying small fluctuations of this state, viewed as a string

solution, one can show that ∆−J is a Hamiltonian for the physical modes [2]. Semiclassical

quantisation treats these modes as quantum fields with energy ∆− J . Giant magnons are

exitations above this vacuum, and so their semiclassical quantisation involves calculating

quantum corrections to this energy [30].

In the present AdS4 × CP 3 case, given the point particle state (3.5) and the vac-

uum (2.2), it is reasonable to guess that ∆− (J1 − J4) /2 will play the same role. Here we

confirm this, by explicitly deriving the fluctuation Hamiltonian.

Write the metric for the AdS4 factor in the form

ds2AdS4
= −

(

1 + r2

1 − r2

)2

dτ2 +
4

(1 − r2)2
dr2 (4.1)

where r = ri, i = 1, 2, 3 are zero at the centre of AdS, and τ is AdS time. (In our

notation worldsheet space and time are x, t). For the CP 3 sector we use yet another set of

co-ordinates, which are convenient for this calculation.4 We write

z =

(

eiβ
1 + ǫ√

2
, y1 + iy2, y3 + iy4, e

−iβ 1 − ǫ√
2

)

(4.2)

3We stress that there are not different Penrose limits for the different giant magnon sectors. To get

precisely this path z, using our conventions given in (A.2) and (A.3), we fix in addition θ = π (in the first

case) and ϕ1 = ϕ2 (in the second), and also swop z2 ↔ z4 in the second case.
4The advantage of these co-ordinates (as opposed to the angles) is that the identification of the charges

Ji here with those for the magnons in section 5 and those for the gauge theory in section 2 is transparent.

To cover the whole space with these co-ordinates we need β ∈ [0, π] and ǫ ∈ [−1, 1). This is clearly seen

in terms of the inhomogeneous co-ordinates z1/z4 = ei2β(1 + ǫ)/(1− ǫ) and z2/z4, z3/z4. (Similar, but not

identical, co-ordinates were used by [6]).
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in terms of which ρ2 = z̄izi = 1+ǫ2 +y2 (where y2 = yjyj). The metric (3.2) then becomes

ds2CP 3 =
(1 + ǫ2)dβ2 + dǫ2 + dy2

1 + ǫ2 + y2

−(ǫdǫ+ y · dy)2 + (2ǫdβ + y1dy2 − y2dy1 + y3dy4 − y4dy3)
2

(1 + ǫ2 + y2)2
.

Putting these together, and dropping R2 in (3.1) (because we pull it out to be the

action’s prefactor) the full metric becomes

ds2 =
1

4
ds2AdS4

+ ds2CP 3 (4.3)

=

(

−1

4
− r2

)

dτ2 + dr2 + (1 − 4ǫ2 − y2)dβ2 + dǫ2 + dy2 + · · · .

On the second line here we expand near r = y = 0, ǫ = 0 and present only the terms

that we will need. The point particle travels on the line τ = 2t, β = t, and we define

perturbations about this as follows:

τ = 2t+
1

λ1/4
τ̃ r =

1

λ1/4
r̃

β = t+
1

λ1/4
β̃ ǫ =

1

λ1/4
ǫ̃ (4.4)

y =
1

λ1/4
ỹ .

The perturbations τ̃ and β̃ will lead to modes which are pure gauge, but are needed for

now to maintain conformal gauge.

The Lagrangian is L = 1
2 (−γ00 + γ11) and the Virasoro constraints are γ00 + γ11 = 0

and γ01 = 0, in terms of the induced metric γab. The components we need are:

γ00 = Gµν∂tX
µ∂tX

ν

=
1

λ1/4

[

−∂tτ̃ + 2∂tβ̃
]

+
1√
λ

[

−(∂tτ̃)
2

4
+ (∂tr̃)

2 + (∂tβ̃)2 + (∂tǫ̃)
2 + (∂tỹ)2 − 4r̃2 − 4ǫ̃2 − ỹ2

]

+
1

λ3/4

[

−4r̃2∂tτ̃ + ∂tβ̃ (. . .) + ∂tỹ · (. . .)
]

+ o

(

1

λ

)

where (. . .) indicates terms not needed for this calculation, and

γ11 = Gµν∂xX
µ∂xX

ν

=
1√
λ

[

−(∂xτ̃ )
2

4
+ (∂xr̃)

2 + (∂xβ̃)2 + (∂xǫ̃)
2 + (∂xỹ)2

]

+ o

(

1

λ

)

.

Next we define the string’s conserved charges. ∆ is the charge generated by time

translation:

∆ = 2
√

2λ

∫

dx
∂L [τ, r, β, ǫ,y]

∂ ∂tτ

= 2
√

2λ3/4

∫

dx
∂L̃

[

τ̃ , r̃, β̃, ǫ̃, ỹ
]

∂ ∂tτ̃

– 6 –
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and Ji is the charge generated by rotation of the zi complex plane:5

J1 = 2
√

2λ

∫

dx
∂L

∂ ∂t(argZ1)

= 2
√

2λ

∫

dx

[

Im
(

Z̄1∂tZ1

)

ρ2
− |Z1|2

∑

i Im
(

Z̄i∂tZi
)

ρ4

]

(4.5)

J4 = 2
√

2λ

∫

dx

[

Im
(

Z̄4∂tZ4

)

ρ2
− |Z4|2

∑

i Im
(

Z̄i∂tZi
)

ρ4

]

.

Substituting in the above mode definitions, we get

∆ =
√

2

∫

dx

[

√
λ+

λ1/4

2
∂tτ̃ + 4r̃2+o

(

1

λ1/4

)

]

(4.6)

J1 =
√

2

∫

dx

[√
λ+ λ1/4∂tβ̃ − 4ǫ̃2 − ỹ2+(ỹ2∂tỹ1 − ỹ1∂tỹ2 + ỹ4∂tỹ3 − ỹ3∂tỹ4)+o

(

1

λ1/4

)]

J4 =
√

2

∫

dx

[

−
√
λ− λ1/4∂tβ̃ + 4ǫ̃2+ ỹ2+(ỹ2∂tỹ1 − ỹ1∂tỹ2 + ỹ4∂tỹ3 − ỹ3∂tỹ4)+o

(

1

λ1/4

)]

.

These diverge as λ → ∞, but for the linear combination used below, the o(
√
λ) terms

cancel. The o(λ1/4) terms, linear in the fluctuations, can be re-written as quadratic o(1)

terms using the Virasoro constraint γ00 + γ11 = 0. This leads to

∆ − J1 − J4

2

=

√
2

2

∫

dx

[

(∂tr̃)
2 + (∂xr̃)

2 + 4r̃2 + (∂tǫ̃)
2 + (∂xǫ̃)

2 + 4ǫ̃2 + (∂tỹ)2 + (∂xỹ)2 + ỹ2

− (∂tτ̃)
2

4
− (∂xτ̃)

2

4
+ (∂tβ̃)2 + (∂xβ̃)2

]

+ o

(

1

λ1/4

)

.

The terms on the last line are the gauge modes, generating infinitesimal reparameterisa-

tions, so would not be included in semiclassical quantisation. After dropping these, we are

left with the Hamiltonian6 ∆ − J1−J4

2 =
√

2
∫

dxH, where7

H =
1

2

[

(∂tr̃)
2 + (∂xr̃)

2 + 4r̃2 + (∂tǫ̃)
2 + (∂xǫ̃)

2 + 4ǫ̃2 + (∂tỹ)2 + (∂xỹ)2 + ỹ2
]

.

5Note that in deriving these charges we treat Z1, . . . , Z4 as independent fields, even though they are

in fact related through Z ∼ λZ, which defines CP 3 from C
4. Therefore, we do this before adopting the

parametrisation (4.2), in which we have fixed some of this gauge freedom by writing only six (not eight)

real co-ordinates.
6This H is the two-dimensional Hamiltonian that one would obtain from the quadratic part of the

fluctuation Lagrangian L = 1

2
(−γ00 +γ11) by naively dropping terms linear in time derivative and reversing

the signs of the terms quadratic in the time derivative. But note that without dropping these o(λ1/4) terms,

the string Hamiltonian is fixed to zero by the Virasoro constraint γ00 + γ11 = 0, which we have used to

derive H.
7The obvious charges one could add to ∆ − (J1 − J4) /2, while keeping it finite, are J2 and J3. These

will add terms like ỹ2∂tỹ1 − ỹ1∂tỹ2 to H.

– 7 –
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This describes eight massive modes: the three r̃i in AdS4, plus ǫ̃ and the four ỹi in CP 3.

As was noted by [6], one of the CP 3 modes, ǫ̃, has reached across the aisle to have the same

mass as the AdS modes r̃. The same list of masses was also found by [10, 11, 29] when study-

ing the Penrose limit, and by [5, 6] for modes of spinning strings in the AdS2×S1 subspace.

5 Placing giant magnons into CP
3

Recall that the Hoffman-Maldacena giant magnon [3] is a rigidly rotating classical string

solution in R × S2, given in timelike conformal gauge by

cos θmag = sin
p

2
sech u (5.1)

tan (φmag − t) = tan
p

2
tanhu

where u = (x−t cos p2)/ sin p
2 is the boosted spatial co-ordinate for a soliton with worldsheet

velocity cos(p/2). The spacetime is ds2 = −dt2 + dθ2 + sin2 θ dφ2 — by timelike gauge we

mean that the target-space time is also worldsheet time.8

We define conserved charges here as follows:

∆ =
√

2λ

∫

dx 1 (5.2)

Jsphere =
√

2λ

∫

dx Im
(

W̄1∂tW1

)

. (5.3)

This ∆ matches (4.6) used above when the AdS fluctuations τ̃ and r̃ are turned off. Note

that we keep the same prefactor
√

2λ here, which is not the one we would use in the

AdS5×S5 case. Finally, we write the complex embedding co-ordinates W1 = eiφmag sin θmag

and W2 = cos θmag.
9

Both ∆ and Jsphere are infinite for the solution (5.1), but their difference is finite:

∆ − Jsphere = 2
√

2λ sin
(p

2

)

.

The parameter p is the (absolute value of the) momentum of the spin chain excitation in

the dual gauge theory, which is why this is called a dispersion relation. It is also equal to

the opening angle ∆φmag of the string solution on the equator θmag = π
2 .

We now turn to solutions in R × CP 3, with metric ds2 = −dt2 + ds2CP 3. All solutions

will be in conformal gauge, and with worldsheet time t related to AdS time τ by τ = 2t,

so we will continue to use the definition of ∆ from (5.2), although for J we must now

use (4.5). We will also continue to use the parameter p ∈ [0, 2π] in all the cases below, and

while this should still be a momentum in the dual theory, we make no comment here on

the precise factors involved.

8What we call timelike conformal gauge is sometimes called static conformal gauge. In our conventions,

AdS time τ is given by τ = 2t. However, because of the factor 1

4
in the metric (4.3), it is t rather than τ

which is physical time.
9Our notation is that (w1, w2) are complex embedding co-ordinates for the sphere, while zi are for CP 3.

Capital letters indicate a string solution in this space.

– 8 –



J
H
E
P
0
4
(
2
0
0
9
)
1
3
6

5.1 The subspace CP
1

If we set z2 = z3 = 0, or in terms of angles (3.3), α = 0, then we obtain the space CP 1 = S2

with metric

ds2 =
1

4

[

d(2µ)2 + sin2(2µ)d
(χ

2

)2
]

. (5.4)

This is a sphere of radius 1
2 , so to place the magnon solution (5.1) here (as was done by [10])

maintaining conformal gauge we need to set

2µ = θmag(2x, 2t) (5.5)
χ

2
= φmag(2x, 2t) .

Using the map (A.3), given in appendix A, and choosing θ = π, we obtain

Z(x, t) =
1√
2

(

e
i
2
φmag(2x,2t)

√

1 − cos θmag(2x, 2t) , 0, 0, e−
i
2
φmag

√

1 + cos θmag

)

(5.6)

=

(

eit+f(2u) sin
θmag(2x, 2t)

2
, 0, 0, e−it−f(2u) cos

θmag(2x, 2t)

2

)

.

Calculating charges for this solution, using definitions (4.5) for J and (5.2) for ∆, we

recover the dispersion relation10

∆ − J1 − J4

2
=

√
2λ sin

(p

2

)

. (5.7)

We should check that this subspace is a legal one, meaning that solutions found here

are guaranteed to be solutions in the full space. This can be done by finding the conformal

gauge equations of motion coming from the Polyakov action with the metric (3.3), and

confirming that α’s equation is solved by α = 0.11 But in this case it is easier to note that

z2 = z3 = 0 trivially solves their equations of motion, (B.2), which we derive in appendix B.

5.2 The subspace RP
2

A second embedding of the S2 solution was first used by [11]12

Z(x, t) =
1√
2

(

eiφmag(x,t) sin θmag(x, t) , cos θmag , cos θmag , e
−iφmag sin θmag

)

. (5.8)

10Note that if you were to omit the second term in (4.5) when calculating J , thus effectivly using (5.3)

appropriate for the sphere, you would get instead ∆ − (J1 − J4)/2 =
√

2λ p cos
`

p
2

´

. In the RP 2 and RP 3

subspaces discussed below, this second term vanishes.
11In addition to solving the conformal gauge equations of motion, a string solution must be in conformal

gauge, i.e. must solve the Virasoro constraints. If the solution on the subspace is in conformal gauge, then

it follows trivially that the solution in the full space is too: the induced metric γab = ∂aXµ∂bX
νGµν is

influenced only by those directions the solution explores, and in these directions the metric Gµν is the same

in both the full space and the subspace.
12We discuss the equations of motion used by [11] for strings in CP 3 in appendix B.2.
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This solution lives in an RP 2 subspace, as can be seen by simply rotating some of the

planes in C
4 = R

8 by π
4 : in terms of new co-ordinates w defined by

w1 =
1√
2

(z1 + z̄4) w4 =
1√
2

(z1 − z̄4) (5.9)

w2 =
1√
2

(z2 + z̄3) w3 =
1√
2

(z2 − z̄3) ,

this solution has w3 = w4 = 0 and is precisely the original giant magnon in the other two

co-ordinates:

(W1,W2) =
(

eiφmag sin θmag , cos θmag

)

.

The reason this is RP 2 rather than S2 is that sending (w1, w2) → −(w1, w2) gives an overall

sign change on z, and these two points are identified in CP 3.13

The subspace which this magnon explores can also be obtained from the metric (3.4),

by fixing ϑ1 = π
2 , ϑ2 = π

2 , ϕ1 = 0 and η = 0. The metric then becomes

ds2 = dξ2 + sin2 ξ d
(ϕ2

2

)2

and the magnon (5.8) is simply ξ = θmag(x, t), ϕ2 = 2φmag(x, t). This can be checked to

be a legal restriction from the equations of motion for the four angles fixed.

This subspace is sometimes, rather misleadingly, referred to as S2 ×S2. It is true that

|z1|2 + |z2|2 = 1
2 and |z3|2 + |z4|2 = 1

2 , and Im z2 = 0 = Im z3. These restrictions alone

would describe a subspace of C
4, namely S2 × S2 ⊂ C

2 × C
2. But we are in CP 3, not

C
4, and the space described by θ, φ (or by ξ, ϕ2) has only two dimensions — these two S2

factors are not independent. In section 6.2 below we discuss a genuine four-dimensional

S2 × S2 subspace.

The charges of this solution are very simply related to those of the magnon on the

sphere, since the extra term in the CP 3 angular momentum (4.5) compared to the that for

the sphere vanishes: Jsphere = J1 = 1
2 (J1 − J4), and we get simply

∆ − J1 − J4

2
= 2

√
2λ sin

(p

2

)

. (5.10)

One difference from the magnon on S2 is that when p = π, the magnon becomes a single

closed string. Its cusps, at opposite points on the equator of S2, are in fact at the same

point in RP 2. In general the magnon connects two points a distance ∆ϕ2 = 2∆φmag = 2p

apart on the equator, but ϕ ∼ ϕ + 2π so p = δ and p = π + δ both connect the same

two points. As was noted by [10], this can be viewed as giving rise to a second class of

magnons, with

∆ − J1 − J4

2
= 2

√
2λ sin

(

π + δ

2

)

= 2
√

2λ cos

(

δ

2

)

.

13In S2, the standard co-ordinates have ranges θ ∈ [0, π] and φ ∈ [0, 2π], and changing θ → π − θ

and φ → φ + π simultaneously moves you to the antipodal point on S2. But performing this change in

the subspace of CP 3 parameterised by (5.8) changes z → −z, and these two points are identified by the

definition of CP 3. This is what makes the subspace RP 2 = S2/Z2 instead of S2. To obtain co-ordinates

which cover this subspace only once, we can shorten the range of either θ or φ, and in figure 1 we choose

to restrict to φ ∈ [0, π] while keeping θ ∈ [0, π].
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Figure 1. Two giant magnons are shown (in red) on the unit sphere S2 (left), on RP 2 (centre,

drawn here as half a sphere) and on CP 1, a sphere of radius 1

2
(right). In all cases they have p1 = 1

2

and p2 = π− 1

2
, which leads to a closed string in the RP 2 case, but not in the S2 or CP 1 cases. In

both the RP 2 and CP 1 cases, the equator is of length π, and we parameterise it by β ∈ [0, π]. The

magnon with p1 = 1

2
spans ∆β = 1

2
in the RP 2 case, but only ∆β = 1

4
in the CP 1 case. On CP 1

we have also drawn a third magnon (in blue) with p3 = 1, which spans the same length of equator

∆β = 1

2
as does the p1 magnon on RP 2.

Figure 1 shows two magnons on S2 and then on RP 2, one with p = 1
2 and another with

p = π − 1
2 . In the RP 2 case they have opposite opening angles δ = ±1

2 , thus form a single

closed string, while in the S2 case the total opening angle is π.

5.3 The subspace RP
3

In the AdS5×S5 case, Dorey’s giant magnons with a second large angular momentum J ′ ∼√
λ allow one to see that the dispersion relation is ∆ − Jsphere =

√

J ′2 + λ
π2 sin2(p/2) [31].

These necessarily live in S3 rather than S2. They are called dyonic magnons, and (embed-

ding S3 ⊂ C
2) can be written

W1 = eit
(

cos
p

2
+ i sin

p

2
tanhU

)

W2 = eiV sin
p

2
sechU

where

U = (x cosh β − t sinhβ) cosα cotα =
2r

1 − r2
sin

p

2

V = (t cosh β − x sinhβ) sinα tanhβ =
2r

1 + r2
cos

p

2
.

The parameter p is still the opening angle along the equator in the W1 plane, although

cos(p/2) is clearly no longer the worldsheet velocity. Sending the new parameter r → 1

reproduces the original giant magnon.
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The second method of embedding S2 solutions into CP 3, given by (5.8), points out a

way to embed S3 solutions:

Z =
1√
2

(

W1,W2, W̄2, W̄1

)

. (5.11)

As before, this is in fact a subspace RP 3 rather than S3, thanks to the identification of

(w1, w2) ∼ −(w1, w2) implied.14

Embedding a dyonic giant magnon in this way gives a CP 3 solution with charges15

∆ − J1 − J4

2
= 2

√
2λ

1 + r2

2r
sin

(p

2

)

J2 − J3

2
= 2

√
2λ

1 − r2

2r
sin

(p

2

)

.

These satisfy the relation

∆ − J1 − J4

2
=

√

(

J2 − J3

2

)2

+ 8λ sin2
(p

2

)

.

Notice that the second angular momentum here is that carried by Y 2 and Y †
3 , which are the

impurities we insert into the vacuum (2.2) to make magnons in the SU(2) × SU(2) sector.

This subspace can also be obtained from (3.4), by fixing ϑ1 = π
2 , ϑ2 = π

2 and η = 0.

The metric becomes

ds2 = dξ2 + sin2 ξ d
(ϕ2

2

)2
+ cos2 ξ d

(ϕ1

2

)2
.

This restriction can be checked to be a legal one from the equations of motion for the angles

ϑ1, ϑ2 and η. The dyonic giant magnon in this space was re-derived by [17], using exactly

these angles. It was also re-derived by [16] using co-ordinates z.

Like the RP 2 magnons above, at p = π these form single closed strings, and beyond

this (π < p < 2π) give a second class of magnons connecting the same two points on the

equator as the magnon with p̃ = p− π.

6 Some larger subspaces

All of the solutions we have discussed so far are known from the AdS5 × S5 case, and

explore only subspaces S2 or S3 ⊂ S5. In this section look at two subspaces of CP 3 on

which new solutions might exist: CP 2 and S2 × S2.

We also study restrictions of this S2 × S2 down to three or two dimensions (in sec-

tions 6.3 and 6.4) since the resulting spaces have been used in the literature.

14Note that the rotation from z to w given by (5.9) is not an isometry, and in particular that the

identification z ∼ λz which defines CP 3 does not apply afterwards: w ≁ λw for complex λ. If w3 = w4 = 0,

as is implied by (5.11), then the phases of w1 and w2 are both physical. (Which is good if we’re claiming

that the dyonic magnon has momenum along both of them).

However, the relation w ∼ λw is true for real λ, and since we have fixed w2
1 + w2

2 = 1 by starting with a

string solution on S2, the identification (w1, w2) ∼ −(w1, w2) is all that survives.
15In calculating these charges from (4.5), the same cancellation of the second term happens here as

happened in the previous section. Thus using the charges one would expect for S7 ⊂ C
4 gives the right

answer here. This does not work in the CP 1 case, see footnote 10.
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6.1 The subspace CP
2

The first larger nontrivial subspace we can find is CP 2, obtained by setting z3 = 0. In

terms of the angles (3.4), the restriction is ϑ2 = 0 (and ϕ2 = 0, since this is now redundant)

and the metric becomes

ds2 = dξ2 +
1

4
cos2 ξ

(

dϑ2
1 + sin2 ϑ1 dϕ

2
1

)

+
1

4
sin2 2ξ

(

dη +
1

2
cos ϑ1 dϕ1

)2

.

The two manifest isometries here are along ϕ1 and η. When ξ = 0 this is an S2 equivalent

to (5.4) (exchange z2 ↔ z4 to align them perfectly). Perhaps allowing ξ 6= 0 will allow new

dyonic solutions here, generalising the CP 1 solution (5.6) just as the dyonic RP 3 solution

generalises the RP 2 solution.

Note that this is certainly a legal subspace, for the same reason as given for CP 1:

setting z3 = 0 certainly solves the z3 equation of motion.

6.2 The subspace S
2 × S

2

If we set ϕ1 = ϕ2 and ϑ1 = ϑ2 in metric (3.4), we get the four-dimensional space

ds2 =
1

4

[

d(2ξ)2 + sin2(2ξ) dη2
]

+
1

4

[

dϑ2 + sin2 ϑ dϕ2
]

(6.1)

which is S2 × S2 (possibly up to co-ordinate ranges), and of course the new angles are

defined ϑ ≡ (ϑ1 + ϑ2)/2 and ϕ ≡ (ϕ1 + ϕ2)/2.

On such a product space, the Polyakov action splits into two terms, giving two non-

interacting sets of target-space co-ordinates. Any two S2 string solutions can be placed

onto the same worldsheet, completely independently. Choosing giant magnon solutions,

worldsheet scattering between these sectors would be trivial, just as it would be on two

decoupled Heisenberg spin chains.

The restrictions needed to obtain this space are that ϑ− ≡ ϑ1 − ϑ2 = 0 and ϕ− ≡
ϕ1 − ϕ2 = 0, and unfortunately the equations of motion for ϑ− and ϕ− are not auto-

matically solved by this choice: instead they give complicated relations between the other

co-ordinates. The equation for ϑ− reads

0 = −∂t (cos 2ξ ∂tϑ) + ∂x (cos 2ξ ∂xϑ) +
1

2
cos 2ξ sin 2ϑ

(

∂2
t ϕ− ∂2

xϕ
)

− sin2 2ξ sinϑ (∂tη ∂tϕ− ∂xη ∂xϕ)

and that for ϕ− reads

0 = −∂t
(

sin2 2ξ cos ϑ∂tη + cos 2ξ sin2 ϑ∂tϕ
)

+∂x
(

sin2 2ξ cos ϑ∂xη + cos 2ξ sin2 ϑ∂xϕ
)

.

These constraints do not of course rule out the existence of solutions on this subspace. But

placing an arbitrary S2 solution into each of the factors is unlikely to produce a solution,

because of these equations coupling ξ, η to ϑ,ϕ.
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6.3 The subspace S
2 × S

1

If we further restrict the above subspace by holding one of the angles fixed, we will get S2×
S1 (again up to identifications). Setting ϑ = π

2 gives the space studied by [17], with metric

ds2 =
1

4

[

d(2ξ)2 + sin2(2ξ) dη2 + dϕ2
]

.

The equation of motion for ϑ is solved by ϑ = π
2 , and the constraints imposed by ϑ− = 0

and ϕ− = 0 above simplify to

0 = −∂tη ∂tϕ+ ∂xη ∂xϕ (6.2)

0 = −∂t (cos 2ξ ∂tϕ) + ∂x (cos 2ξ ∂xϕ) . (6.3)

These constraints were not taken into account by [17], who sets ϑ− = 0 before calcu-

lating the equation of motion for ϑ (which is indeed solved) but without ever calculating

the equation of motion for ϑ−.16 The magnon ansatz used there sets η = ωt+f(u), ϕ = νt

and ξ = g(u), in terms of boosted u = βt + αx. The first constraint (6.2) then implies

β f ′(u) = −ω, while for a magnon solution one typically has f(u) ∝ tanhu. The second

constraint (6.3) implies β = 0, so together they imply ω = 0.

This problem does not arise in the other case studied by [17], where the ϑ− equation

is solved by η = 0, and ϕ1 6= ϕ2 so there is no ϕ− constraint. The resulting subspace is the

RP 3 discussed in section 5.3.

6.4 The subspace CP
1, again

Finally, we can restrict the subspace S2 × S2 of (6.1) by holding both of the angles in one

factor constant, to obtain S2. Setting ξ and η to be constants leaves the space

ds2 =
1

4

[

dϑ2 + sin2 ϑ dϕ2
]

which is, like our CP 1 of section 5.1, a sphere of radius 1
2 . This is a legal subspace, as

the equations of motion for ξ and η are automatically solved (because a stationary particle

anywhere on the sphere is a solution) and the constraints arising from ϑ− = 0 and from

ϕ− = 0 become simply the equations of motion for ϑ and ϕ.

When ξ = π
2 , and using the conventions given in appendix A, this space is embedded by

z =

(

eiϕ/2 cos
ϑ

2
, 0, 0, e−iϕ/2 sin

ϑ

2

)

.

This is precisely the same subspace CP 1 as in (5.4), although we obtained it there by

fixing α = 0 in the other set of angles (3.3). Fixing ξ to some other value will simply rotate

the 1-2 and 3-4 planes, but in all cases the space is S2 = CP 1. Like the subspace RP 2

discussed in section 5.2, this one is sometimes referred to as S2 × S2 in the literature.

These co-ordinates were used by [32] to study finite-J effects on the CP 1 giant magnon.

We give their results in (7.2) below.

16The constraint (6.2) can also be obtained without using ϑ−, by simply setting ϑ1 = π
2

and ϑ2 = π
2

in

their equations of motion.
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7 Finite-J corrections

All of the giant magnons we have written down so far have both infinite energy and infinite

angular momentum. As can be seen from (5.2), this corresponds to infinite worldsheet

length in the timelike conformal gauge we are using.

The first treatment of giant magnons AdS5 × S5 at finite J was by [33], who worked

in uniform lightcone gauge, in which the worldsheet density of J , rather than of ∆, is

constant. Their gauge has a parameter a ∈ [0, 1], and at a = 0 (and in conformal gauge)

they obtained the following correction to the dispersion relation:

ε ≡ ∆ − J =

√
λ

π
sin

(p

2

)

[

1 − 4

e2
sin2

(p

2

)

e−2J/ε + o(e−4J/ε)

]

=

√
λ

π
sin

(p

2

) [

1 − 4 sin2
(p

2

)

e−2∆/ε + · · ·
]

Exact solutions at any J were studied by [34], where it was shown that they are connected

by the Pohlmeyer map to kink-train solutions of sine-gordon theory. The apparent gauge-

dependence of the results of [33] was resolved by [35], using the fact that the solutions are

periodic both on the worldsheet and in the azimuthal angle on the sphere, and so can be

viewed as wound strings on S2/Zn [35, 36]. The scattering of finite-J magnons was studied

by [37], using the connection to sine-gordon theory in finite volume.

The finite-J generalisations of the basic giant magnon are still solutions moving on

S2, and so one can place them into CP 3 using either of the maps presented in sections 5.1

and 5.2 above. For the RP 2 giant magnon, the corrected dispersion relation was derived

by [38] to be

∆ − J1 − J4

2
= 2

√
2λ sin

(p

2

)

[

1 − 4 sin2
(p

2

)

e−2∆
/

2
√

2λ sin( p
2
) + · · ·

]

. (7.1)

For the CP 1 giant magnon, [32] give the result17

∆ − J1 − J4

2
=

√
2λ sin

(p

2

)

[

1 − 4 sin2
(p

2

)

e−2∆
/√

2λ sin( p
2
) + · · ·

]

. (7.2)

17Here is brief note about deriving these two results from the original S2 case. The integrals defining the

charges are now over a finite length −L < x < L, so write J(L) and ∆(L). Note that ∆(2L) = 2∆(L).

To get the charges for one magnon, we must integrate from one cusp to the next: choose L such that

θmag(x = ±L, t = 0) are at the first cusps.

For the RP 2 case, the relationship we used before Jsphere(L) = J1(L) = (J1(L) − J4(L)) /2 still holds,

leading to (7.1). We wrote the S2 result above using the prefactor appropriate for AdS5 ×S5, so to get this

result for the AdS4 × CP 3 theory have replaced
√

λ/π → 2
√

2λ.

For the CP 1 case, the cusp at θmag(L, 0) is at ZCP1(L
2
, 0), thanks to the scaling (5.5). The relationship

between charges is that

J1(
L
2
) − J4(

L
2
)

2
=

1

2
Jsphere(L).

Thus ∆(L
2
) − (J1(

L
2
) − J4(

L
2
))/2 = ∆(L

2
) − 1

2
Jsphere(L) = 1

2
(∆(L) − Jsphere(L)). In the result (7.2), it is

the energy for one magnon ∆(L
2
) which appears both on the left hand side and in the exponent.

– 15 –



J
H
E
P
0
4
(
2
0
0
9
)
1
3
6

We observe that, even at finite J , two CP 1 magnons have the same dispersion relation as

one RP 2 magnon, provided all three have the same value of the parameter p.18

Dyonic giant magnons can also be studied at finite J ; this has been done for those

in S5 from this string sigma-model perspective by [34, 39], and for those in RP 3 ⊂ CP 3

by [16, 40].

In the AdS5×S5 case these corrections can also be calculated using algebraic curves [41]

or using the Lüscher formula [42], and these agree with the string sigma-model result

presented above. For calculations on the gauge theory side of the correspondance see [43].

In AdS4 × CP 3 the same list of methods is possible, and we discuss these further in

section 8.3 below.

8 Discussion and conclusion

In this paper we have only discussed giant magnon solutions known from AdS5 × S5, but

have been careful about how these are placed into CP 3. Here we summarise these results,

comment on more general solutions, and comment on connections to approaches other than

the classical string sigma-model.

8.1 Single-charge giant magnons

In sections 5.1 and 5.2 we looked at two different ways to embed the basic single-charge

giant magnon (5.1), into either CP 1 or RP 2 [10, 11]. This CP 1 is a two-sphere of radius
1
2 , while RP 2 is half a two-sphere, so both have an equator of length π. We lined up the

embeddings into C
4 such that, in both cases, the equator is the line

z =
1√
2

(

eiβ , 0, 0, e−iβ
)

where we name the angle β ∈ [0, π], as in (4.2) above, to avoid confusion.

Since the basic magnon (5.1) has opening angle ∆φmag = p, these two solutions have

CP 1 : β = χ/4 = φmag/2 =⇒ ∆β = p/2

RP 2 : β = ϕ2/2 = φmag =⇒ ∆β = p′

(where we now write p′ for the parameter of the RP 2 magnon, to distinguish it from the

CP 1 case’s p). A single giant magnon is not a closed string solution, one must join a set

of them together at their endpoints on the equator. The condition for a set pi of CP 1

magnons or p′j of RP 2 magnons to close is that the total opening angle ∆β should be a

multiple of π, that is,

CP 1 :
∑

i

pi = 2πn (8.1)

RP 2 :
∑

j

2p′j = 2πn , n ∈ Z.

18Note that that essentially all the properties of the two CP 1 magnons add up to give those of the single

RP 2 magnon: energy ∆, angular momentum (J1 −J4)/2, worldsheet length L and opening angle along the

equator (which we call ∆β in the next section).
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The point particle (3.5) moves along the same equator too, and by calculating fluctu-

ations of this solution, we checked in section 4 that ∆− J1−J4

2 is indeed a Hamiltonian for

them, just as ∆ − J is in the S5 case. Calculating the same difference of charges for the

two magnon embeddings, we obtained dispersion relations (5.7) and (5.10), which we now

write also in terms of the opening angle ∆β:

CP 1 : ∆ − J1 − J4

2
=

√
2λ sin

(p

2

)

=
√

2λ sin (∆β)

RP 2 : ∆ − J1 − J4

2
= 2

√
2λ sin

(

p′

2

)

= 2
√

2λ sin

(

∆β

2

)

.

Notice that these agree at small ∆β. The limit p → 0 takes you from giant magnons to

the Penrose limit (via the interpolating case of [44], studied here by [45]). Finite-J effects

in the Penrose limit were studied by [46].

As noted in section 5.2, there is also a second magnon on RP 2 for any given opening

angle ∆β, which has charges [10]

RP 2′ : ∆ − J1 − J4

2
= 2

√
2λ cos

(

∆β

2

)

.

For small ∆β this is almost a circular string, with its ends slightly offset along the equator

— see figure 1 on page 11 above.

8.2 More solutions!

While we used the giant magnon on S2 (5.1) as an example, the subspaces we have described

exist independently of it, and any other string solution moving on S2 can be placed into

either of these subspaces of CP 3 in the same way. Thus not only finite-J magnons (as

discussed in section 7 above) but also scattering solutions [47] and single spikes19 [48–50]

all exist in both the CP 1 and RP 2 subspaces. The equations of motion do not notice the

global identification (w1, w2) ∼ −(w1, w2) which distinguishes RP 2 from S2, and the fact

that CP 1 is a sphere of radius 1
2 can be dealt with by the same scaling (5.5) that we used

for the basic magnon.

Many papers interpret the magnon on RP 2 (and also that on RP 3) as being two

magnons, one in each half of the embedding space C
2 ×C

2 [11, 16]. It is then tempting to

identify these two halves with the even- and odd-site spin chains in the dual description’s

SU(2)×SU(2) sector. For the known solutions, however, these two halves are not indepen-

dent: in fact they are always locked together, and by a trivial change of co-ordinates (5.9)

we can write them as a single RP 2 = S2/Z2 space. This does not rule out the existence

of two independent magnon sectors, such that a pair of magnons of the same parameter p

gives us again the known RP 2 solution. But at present individual solutions in these two

sectors are not known.
19Single-spike solutions of all kinds can be easily obtained from their giant magnon partners by the x ↔ t

exchange discussed in [48, 49]. As in R×S5, this exchange (keeping X0 = t) is a symmetry of the equations

of motion (B.2) and the Virasoro constraints for R × CP 3. Thus the classical solutions have no properties

which cannot be read off from the corresponding magnon solution. However, the quantum properties are

quite different [49].
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The single-parameter giant magnon on S2 has a two-parameter dyonic generalisation

on S3, and in section 5.3 we looked at how to map this into RP 3 ⊂ CP 3, where it generalises

the RP 2 solution. The dyonic generalisation of the CP 1 solution is not known, but it might

lie in the CP 2 subspace we discussed in section 6.1.

It would be very interesting to find some indication among the magnon solutions of

the weaker momentum constraint: the momentum in just the even-site or just the odd-site

spin chain need not vanish, only the total. Combining the two closure conditions (8.1) to

give
∑

i pi+
∑

j 2p′j = 2πn cannot be the answer, because these two classes of magnons are

certainly inequivalent solutions, while the even- and odd-site spin chains are related by an

SU(4) rotation.

8.3 Beyond the classical sigma-model

The classical string solutions we have discussed are well-known from the S5 case, and

explore only S2 or S3-like subspaces of CP 3.. Their classical properties (and indeed those

of solutions we have not discussed, such as scattering solutions) are not strongly affected

by being transplanted to the new space. However, their quantum properties will certainly

depend on the whole space, as was the case for spinning string solutions in AdS2 × S1

studied by [5]. The relevant supersymmetric sigma model (for strings on AdS4×CP 3) was

first studied by [6, 7]. Using this one would like to perform a calculation like that done for

magnons in AdS5 × S5 by [30].

Like the equations of motion, the Pohlmeyer map [51] to the sine-gordon field α (given

by cosα = −∂tW̄i∂tWi + ∂xW̄i∂xWi in the S2 case) depends only locally on the target-

space co-ordinates. Thus strings on either CP 1 or RP 2 will be classically equivalent to

the sine-gordon model. The condition that the string closes
∑

∆β ∼ 0 plays no role in

the sine-gordon model, thus the second class of magnons, which we called RP 2′ above,

has no special meaning in sine-gordon theory. As quantum systems, strings on R × S2 are

quite different to the sine-gordon model, thanks to the different notion of energy, and this

complicates the translation of the n-body description of solitons in sine-gordon theory to

this case [3, 52, 53]. The Pohlmeyer reduction has been extended to the full superstring

on AdS5 × S5, [54] and also to strings moving on CP 3 [55].

Classical strings in AdS4×CP 3 can also be studied using the algebraic curve, in which

the 10 eigenvalues qa of the monodromy matrix Ω are analytic functions of the spectral

parameter, and their various poles and branch points control the solution [56]. Giant

magnons in this picture were studied by [57], and are of two distinct kinds, ‘small’ and

‘big’. Their dispersion relations are as follows:

small GM: ε =

√

1

4
+ 2λ sin2

(p

2

)

→
√

2λ sin
(p

2

)

when
√
λ≫ 1

big GM: ε =

√

1 + 8λ sin2
(p

4

)

→ 2
√

2λ sin
(p

4

)

.

It would seem natural to identify these with the CP 1 and RP 2 magnons of the string

sigma-model, presumably with p′ = p/2 = ∆β. There are two ‘small GM’ sectors, together

often called the SU(2) × SU(2) sector.
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However, the study of finite-J corrections to these paints a different picture. Accord-

ing to [58], two ‘small GM’s in the two sectors, both with the same momentum p, have

a correction δε matching the RP 2 string result (7.1). This does seems to point to the

interpretation of the RP 2 string solution as two giant magnons, as was originally claimed

by [11]. However, the same paper’s result for one ‘small GM’ does not match any of the

string calculations, apparently leaving open the identification both of the string state for

this, and of the algebraic curve corresponding to the CP 1 string. Finite-J corrections have

also been studied using the Lüscher formula by [58, 59], and the results agree with those

from the algebraic curve.
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A More about CP
3’s geometry

The complex projective space CP 3 is defined to be

CP 3 =
C

4

z ∼ λz

where z = za are called homogeneous co-ordinates. We can split this identification into

z ∼ rz and z ∼ eiφz (for any r, φ ∈ R) and then replace the first one with the condition

|z|2 = 1, to obtain a sphere with one identification

CP 3 =
S7

z ∼ eiφz
=

S7

U(1)
.

The isometry group is SU(4), acting in the natural way on z. Since the stabiliser group of

(say) the point z4 = 1 is U(3), we can also write

CP 3 =
SU(4)

U(3)
.

The infinitesimal form of the standard Fubini-Study metric for this is

ds2CP 3 =
dzidz̄i
ρ2

− |zidz̄i|2
ρ4

= ds2sphere − dγ2 (A.1)

=
ds2flat − dρ2

ρ2
− dγ2

– 19 –



J
H
E
P
0
4
(
2
0
0
9
)
1
3
6

where ρ2 = ziz̄i. (Note that in some conventions the metric is 4 times this, [10, 60]

making CP 1 (5.4) a unit sphere). In the second and third lines above, ds2flat = dzidz̄i is

the Euclidean metric for C
4, and ds2sphere is a metric for S7 in terms of these embedding

co-ordinates. Instead of fixing ρ = 1, this way of treating the sphere subtracts off the

component coming from radial motion (and scales the rest appropriately). In turn, CP 3

can be obtained from the sphere by fixing the total phase γ = arg
∏

i zi, or instead by

subtracting the total phase component. These two pieces are

dρ =
1

2ρ
(zidz̄i + z̄idzi) =

1

ρ
Re (z̄idzi)

dγ =
i

2ρ2
(zidz̄i − z̄idzi) =

1

ρ2
Im (z̄idzi) .

We now present the maps between the homogeneous co-ordinates and the two sets of

angles we have used. These are taken from [29] and [25], although we have shuffled the zi.

For the metric (3.4) (whose η is often called ψ)

ds2CP 3 = dξ2 +
1

4
sin2 2ξ

(

dη +
1

2
cos ϑ1 dϕ1 −

1

2
cos ϑ2 dϕ2

)2

+
1

4
cos2 ξ

(

dϑ2
1 + sin2 ϑ1 dϕ

2
1

)

+
1

4
sin2 ξ

(

dϑ2
2 + sin2 ϑ2 dϕ

2
2

)

the relationship is:

z1 = sin ξ cos(ϑ2/2) e
−iη/2 eiϕ2/2

z2 = cos ξ cos(ϑ1/2) e
iη/2 eiϕ1/2 (A.2)

z3 = cos ξ sin(ϑ1/2) e
iη/2 e−iϕ1/2

z4 = sin ξ sin(ϑ2/2) e
−iη/2 e−iϕ2/2.

For the other set of angular variables (3.3)

ds2CP 3 = dµ2 +
1

4
sin2 µ cos2 µ

[

dχ+ sin2 α (dψ + cos θ dφ)
]2

+ sin2 µ

[

dα2 +
1

4
sin2 α

(

dθ2 + sin2 θ dφ2 + cos2 α (dψ + cos θ dφ)2
)

]

the map is specified by

z1/z4 = tanµ cosα eiχ/2

z2/z4 = tanµ sinα sin(θ/2) eiχ/2 ei(ψ−φ)/2 (A.3)

z3/z4 = tanµ cosα cos(θ/2) eiχ/2 ei(ψ+φ)/2.

These ratios zi/z4 are called inhomogeneous co-ordinates, and cover the patch z4 6= 0 with

no identifications [60]. With the ranges given, the trigonometric functions controlling the

amplitudes are always positive in both of these cases. From the phases of the inhomoge-

neous co-ordinates of zi/z4 it is easy to see that ranges of the remaining angles are correct.
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B Strings in homogeneous co-ordinates

To study bosonic string theory in Sn, it is often convenient to use embedding co-ordinates

for R
n+1 and then constrain the radius to 1. This avoids all the trigonometric functions

needed for angular co-ordinates, and (in AdS/CFT) also gives a simple correspondence

between the R-symmetry generators and the rotations of this space. We can do the same for

CP 3, using homogeneous co-ordinates z. We will need two constraints, ρ2 = 1 and γ = 0.

B.1 Using Lagrange multipliers

Begin by writing the metric for R × CP 3 as

ds2 = −
(

dX0
)2

+ dz̄iGijdzj with Gij =
δij
ρ2

− ziz̄j
ρ4

In conformal gauge, and with X0 = κt, the Polyakov action is

S =

∫

dx dt

2π
R2L (B.1)

= 2
√

2λ

∫

dx dtL

2L = κ2 + ∂aZ̄iGij∂aZj + Λρ
(

Z̄iZi − 1
)

+ iΛγ
(

Z1Z2Z3Z4 − Z̄1Z̄2Z̄3Z̄4

)

.

Note that Λγ ∈ R, since the piece in brackets is proportional to 2i sin γ. In calculating

Euler-Lagrange equations for this, we set ρ = 1 immediately, simplifying ∂Gij/∂Zi etc.

greatly. The Lagrange multipliers can be read off from the parallel component of the

equations (i.e. Z̄i times Zi’s equation of motion) which is:

Λρ − 4i (Z1Z2Z3Z4) Λγ = ∂tZ̄i∂tZi − 2
∣

∣Z̄i∂tZi
∣

∣

2 − ∂xZ̄i∂xZi + 2
∣

∣Z̄i∂xZi
∣

∣

2
.

(This 4 is the number of complex embedding co-ordinates). The right-hand side here is

real, which implies Λγ = 0. Using this, we find the equation of motion for Zi to be

− ∂t (Gij∂tZj) + ∂x (Gij∂xZj) = ZiΛρ −
(

Z̄j∂tZj
)

∂tZi +
(

Z̄j∂xZj
)

∂xZi . (B.2)

The Virasoro constraints are

−κ2 + ∂tZ̄i Gij ∂tZj + ∂xZ̄i Gij ∂xZj = 0

Re
(

∂tZ̄i Gij ∂xZj
)

= 0 .

The result that Λγ = 0 deserves a little explanation. If we were to analyse strings on

the sphere using a similar metric (in fact exactly ds2sphere from (A.1) above):

2L = 1 + ∂aXi∂aXjgij + Λ(X2 − 1), with gij =
δij
ρ2

− XiXj

ρ4

then we would also find Λ = 0, although the equations of motion are the same as are

obtained with gij = δij (i.e. using ds2flat). In some sense the metric is enforcing the constraint

for us. The reason we had Λρ 6= 0 in the CP 3 case above was that we set ρ = 1 at an early

stage of the calculation.
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B.2 Constraining S
7 solutions

The approach of [11] (and others) to strings on CP 3 is to find solutions on the sphere

S7 ∈ C
4, and then further demand that the two Noether charges from ∂γ vanish:

0 = C0 ≡
4

∑

i=1

Im
(

Z̄i∂tZi
)

, 0 = C1 ≡
4

∑

i=1

Im
(

Z̄i∂xZi
)

.

This is true for the RP 2 solution (5.8) given by [11], and more generally, for any solution

on the larger RP 3 subspace of section 5.3. In terms of the co-ordinates w from (5.9), the

condition w3 = w4 = 0 which defines this subspace implies C0 = C1 = 0, and also reduces

the equations of motion (B.2) to those for the sphere S3 embedded in (w1, w2).

But more general solutions, such as the CP 1 solution (5.6), do not solve these con-

straints, nor do they solve the equations of motion for S7 ⊂ C
4. So these conditions

(solution on S7, and C0 = C1 = 0) are certainly not necessary for a solution. Whether

they are sufficient is not entirely clear to us.20

We noted in section 5.3 that when working in the subspace RP 3, the second term in

the definition of charges Ji (4.5) vanishes, and what is left is the definition of the conserved

charge from rotational symmetry of the zi plane one would expect in S7. Here we can add

that the term which vanishes is |Zi|2 C0/ρ
4. This does not vanish for the CP 1 case (5.6),

see footnote 10.

Finally, we note that in terms of charges Ji we used throughout, something like the

constraint C0 = 0 does hold:
∑4

i=1 Ji = 0 follows trivially from the definition (4.5).
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